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ABSTRACT 

The e f f e c t  of a s ing le  engine f a i l u r e  during first s t age  
f l i g h t  of t h e  Saturn I B  vehicle  was inves t iga ted  as 
authorized by Scope Change 1128. 
were vehicle  con t ro l l ab i l i t y ,  aerodynamic loading, and 
mission completion. 
f a i l u r e  f o r  each of these  considerations w a s  established. 
The more c r i t i c a l  t r a j e c t o r i e s  were used t o  study t h e  
e f f e c t s  of dispersions i n  se lec ted  vehicle  parameters on 
t h e  vehicle performance and con t ro l l ab i l i t y .  

The prime considerations 

The range of allowable time of engine 
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1.0 INTRODUCTION 

This report  presents  the r e s u l t s  of a study t o  determine t h e  e f f ec t s  
of a first s tage  engine f a i l u r e  on the performance of the  Saturn I B  
vehicle,  The c r i t e r i a  used t o  evaluate  t h e  vehic le  performance included 
the a b i l i t y  t o  maintain control ,  t o  maintain the  vehicle  s t r u c t u r a l  
loads at  a safe l eve l ,  and t o  achieve t h e  desired o r b i t ,  
bances and dispersions i n  se l ec t ed  vehicle  parameters were considered 
i n  addi t ion t o  engine f a i lu re s ,  Engine f a i l u r e s  were simulated f r o m  
l i f t o f f  t o  outboard engine cutoff (OECO) , 

Wind dis tur-  

The vehicle  dynamic response t o  a wind gust was determined f o r  e i t h e r  
engine 1 or engine 3 out a t  various times. Outboard engine f a i l u r e s  
were selected because of the resu l t ing  loss of cont ro l  moment and the  
more severe,  when compared t o  a f ixed  inboard engine, dis turbing moment, 
The r e s u l t s  f o r  engine 2 o r  engine 4 f a i lu re s  are not presented s ince  
t h e  e f f e c t s  of 1 or  4 and 2 o r  3 i n  the p i t c h  plane and 1 or  2 and 3 
o r  4 i n  t he  yaw plane are equivalent,  

For each engine-out t i m e ,  a wind p r o f i l e  w a s  constructed such t h a t  the  
peak wind ve loc i ty  w a s  applied at t h e  a l t i t u d e  of maximum dynamic pres- 
sure. This  combination w a s  found t o  be the  most c r i t i c a l  w i t h  respect  
t o  aerodynamic loading. 
of t h e  loca l  horizontal ,  The results of t h e  loads analysis ,  which w a s  
made f o r  t h e  most c r i t i c a l  (maximum load) engine-out t r a j e c t o r i e s ,  are 
presented as the equivalent compressive load at  the two most c r i t i c a l  
vehicle  s t a t ions  as a function of  t i m e  of engine f a i lu re ,  

Wind ve loc i ty  w a s  assumed p a r a l l e l  t o  the plane 

The vehicle  dynamic response f o r  various engine-out conditions i s  pre- 
sented i n  the form of p r o f i l e s  of angle of a t tack ,  dynamic pressure,  
normal accelerat ion,  angular accelerat ion,  and engine def lect ion,  

Variation i n  angle of a t tack ,  dynamic pressure,  angular acce lera t ion ,  
normal accelerat ion and engine def lect ion were determined as functions 
of dispersions .in center  of pressure , center of gravi ty ,  a t t i t u d e  e r r o r  
and angle of attack gains ,  individual  engine t h r u s t ,  and t o t a l  th rus t .  
These var ia t ions  were determined f o r  the  most c r i t i c a l  engin-out 
t r a j e c t o r i e s  e 

Results ind ica te  t h a t  cont ro l lab i l i ty* ,  from ei ther  a tumbling or  
s t r u c t u r a l  loading point  of view, i s  c r i t i c a l  f o r  engine f a i l u r e s  p r i o r  
t o  83 seconds'(the t i m e  of peak dynamic pressure i n  the  8 engine tra- 
j ec to ry )  when wind disturbances and three sigma parameter var ia t ions  
are included, This  i s  based on the most c r i t i c a l  eng ineou t  t r a j e c t o r i e s  
w i t h  respect t o  t h e  m a x i m u m  angle of attack-dynamic pressure product. 

Actual loss of control  o r  tumbling occurs f o r  engine number 1 f a i l u r e s  
p r i o r  t o  about 20 seconds after l i f t o f f  and engine number 3 f a i l u r e s  
p r i o r  t o  about 10 seconds after l i f t o f f .  However, t h i s  tumbling doesn't 
occur u n t i l  t he  vehicle  reaches t h e  region of maximum dynamic pressure 
which i s  between 115 and 125 seconds after l i f t o f f  f o r  an engine f a i l u r e  

* For the purpose of t he  study, t h e  vehic le  w a s  considered t o  be $0 con- 
t ro l l ab le"  i f  it d i d  not tumble and i f  the s t r u c t u r a l  i n t e g r i t y  w a s  
maintained, 

1 



2.0 

ear ly  i n  f l i g h t .  
of disturbances due t o  winds and dispersions i n  vehicle  parameters, 

These unstable conditions e x i s t  without t he  e f f e c t s  

When disturbances due t o  winds are included, the time p r i o r  t o  which 
an engine failure r e su l t s  i n  unsat isfactory control  is extended t o  59 
seconds due t o  excessive equivalent compressive loads at vehicle  s t a t i o n  
962.304. 
engine f a i l u r e s  i n  the  t i m e  i n t e r v a l  from 72 t o  83 seconds. The equiva- 
l e n t  compressive loads w e r e  considered t o  be excessive i f  the loads, 
described i n  reference 5, were exceeded, 
f o r  engine f a i l u r e s  i n  the t i m e  i n t e r v a l  from 59 t o  72 seconds with 
wind disturbances, but when var ia t ions  i n  t h e  compressive load due t o  
dispersions i n  vehicle  parameters were included, the loads a t  s t a t i o n  
962.304 became excessive f o r  engine f a i l u r e s  i n  t h i s  i n t e rva l ,  

Winds a l so  r e s u l t  i n  excessive loads at the  above s t a t i o n  for  

These loads were not exceeded 

Studies made t o  determine the  e f f ec t s  of an engine f a i l u r e  on t h e  re- 
s u l t a n t  o r b i t  ind ica te  engine f a i l u r e s  p r i o r  t o  139 seconds y i e l d  
r e su l t an t  earth o rb i t s  whose perigee a l t i t u d e s  are deemed unacceptable. 
An unacceptable o rb i t  w a s  assumed t o  be an o rb i t  having a perigee al t i-  
tude less than 60 naut ica l  miles. 
leads t o  o r b i t s  whose perigees are grea te r  than 60 naut ica l  miles but 
less than the nominal 105 nau t i ca l  miles. 

Engine f a i l u r e  after 139 seconds 

SIMULATION PROGRAM 

2.1 Program Character is t ics  

The d i g i t a l  computer program used f o r  simulating boost s tage  f l i g h t  
cha rac t e r i s t i c s  simulates 6-degree-of-freedom f l i g h t  over a ro t a t ing ,  
oblate  spheroidal  earth. 
geometry of t h e  S-IB stage. 
of the e ight  engines is  treated separately so tha t  an engine f a i l u r e  
may be eas i ly  simulated. 
simulated by an i n t eg ra to r  with posi t ion feedback. 
rate and pos i t ion  limits may be imposed on the  ac tua tor ,  and various 
servo malfunctions such as gain changes or open loops may be eas i ly  
simulated i f  desired. 

The program includes t h e  engine and ac tua tor  
The force  and moment contribution of each 

Each of the e ight  valve-actuator loops i s  
In  t h i s  way, both 

The avai lable  au topi lo t  feedback s igna ls  include a t t i t u d e  e r r o r ,  a t t i -  
tude e r r o r  rate, body rate, angle of attack, rate of change of angle 
of a t t ack ,  normal accelerat ion,  and i n t e g r a l  of a t t i t u d e  e r ror .  Any 
or  a l l  of these s igna ls  may be used t o  simulate the autopi lot ,  

2.2 Upper Staae Simulation 

Two other  d i g i t a l  programs were u t i l i z e d  f o r  second s tage  and orbital  
f l i g h t .  Second s tage  f l i g h t  simulation w a s  defined w i t h  a 2-dimensional 
t r a j ec to ry  optimization program which simulates the  path adaptive guidance 
of t h i s  stage.  An o r b i t  determination program w a s  used f o r  f l i g h t  eval- 
uation after second s tage  burnout, 
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3.0 VEHICLE CONFIGURATION 

3 e 1 Vehi c l e  Characteris t i c s  

The Saturn I B  vehicle  outboard p r o f i l e  is shown i n  f i gu re  1, The vehicle  
coordinate system and engine s ign  convention used f o r  t h i s  study are pre- 
sented i n  f igure  2. 

The m a s s  cha rac t e r i s t i c s  given i n  references 1 and 2 were modified t o  
r e f l e c t  changes due t o  the redesigned f i n s  and a subsequent 300 pound 
payload increase. A weight summary i s  presented i n  table I and the  
modified w e i g h t ,  center  of gravi ty ,  and moments of i n e r t i a ,  as a function 
of propel lant  consumed, are given i n  table 11. Table I11 lists the  per- 
t i n e n t  propulsive charac te r i s t ics .  
( I E C O )  and OECO as a function of the  time of an outboard engine f a i l u r e  
are presented i n  f igu re  3. 

The t i m e  of inboard engine cutof f 

3.1.2 Aerodynamic Data 

The center  of pressure,  slope of the  normal force coe f f i c i en t ,  and t h e  
nominal drag coef f ic ien t  were taken from reference 3 and are presented 
as a function of Mach number i n  f igures  4 and 5. The 7-engirie-burning 
drag coef f ic ien t  ( a l s o  presented i n  f igure  4) i s  d i f f e ren t  from the 
8-engine-burning drag coef f ic ien t  due t o  the f a c t  tha t  t he  base pressure 
drag coe f f i c i en t ,  which i s  a function of the  exit pressure area, i s  
reduced approximately 12 percent with the occurrence of an engine fa i lure .  
The aerodynamic parameters given include t h e  e f f ec t s  of t h e  redesigned 
f ins .  

Trajectory 

.The reference t r a j e c t o r y  is a d i r e c t  ascent from AMR, w i t h  an aiming 
azimuth of 72 degrees measured east of north, t o  a 105 nau t i ca l  mile 
c i r c u l a r  o rb i t .  The S-IB s tage  p i t c h  command h i s to ry  i s  character ized 
by v e r t i c a l  ascent f o r  25 seconds followed by a commanded gravi ty  tilt 
turn ing  rate program, u n t i l  OECO. The p i t ch  command h i s to ry  was 
simulated by f i t t i n g  the program w i t h  a f i f t h  degree polynomial. 
S-IVB stage t r a j e c t o r y  i s  determined u t i l i z i n g  a simulated path adaptive 
guidance system t o  achieve o r b i t  in jec t ion .  Per t inent  t r a j ec to ry  para- 
meters are presented i n  tables I V  and V. I n  each engine out t r a j e c t o r y  
constant missile a t t i t u d e  w a s  commanded following the t i m e  of nominal 
OECO u n t i l  ac tua l  S-IVB igni t ion.  

The 

3.3 Control System Data 

The control  equation f o r  both the  p i t c h  and yaw autopiPots of t h e  S-IB 
stage included a t t i t u d e  e r ro r ,  rate of change of a t t i t ude  e r r o r ,  and 
angle of a t tack  feedback. 
determined through the use of the d r i f t  minimum control  p r inc ip l e  (zero 
steady state normal accelerat ion i n  t he  presence of winds) and the  

The gains on these feedback s igna ls  were 

3 
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SaTUBiu IB WEIGH!!! SUMMARY 
Om EIBGIlmE OUT ANALYSIS 

Event 
_I_ 

Vehicle at Lift-off 
Propellant 
mst, Fuel, Additive, & Lube O i l s  

IECO - Prior 
Thrust Decay Propellant 

IECO - After 
Propellant 
Frost,  Fuel Additive, & Lube O i l s  

OECO and Separation - Prior 
Thrust Decay Propellant --- 10$ Level 
S-IVB Ullage Propellant 
Interstage 
S-IB Stage 
Frost, Fuel Additive, &Lube O i l s  

OECO and Separation - mer 

S-NB Ignition - Prior 
T W S ~  wriiaup propellant 

S-IVB Ignition - After 
s-IVB propezL&nt 

IiES Jettison - Prior 
U S  
Ullage Rockets 

IiES Jettison - After  
s-m propellsrrt 

s-m cut-off 

Weight 
(Lb) 

L277,278 0.0 
864.447 

410,902 147.1 
16,019 

20 

394,863 153.1 
1,215 
182 

-5,- 
100,585 
1,128 

485 

4,695 

=4,166 

286,093 153.1 

286,093 158.6 

285,608 158.6 

280,913 1.68~6 

274,100 168.6 

59,934 624.8 

6 



WEIGHT OF S-IB 
P R O P E M  

CONS= (LBS) 

0 

57,895 
116,519 
175,419 
234,379 
293,415 
352,473 

471,632 
530,842 
590,097 
648,980 
707 9 674 
766,162 
824,352 
864,447 
865,895 

883,189 

412,478 

881 , 914 

TABLE I1 

SATURH IB/S-IB STAGE MASS CHARACTERISTICS 

TIME 
(SEC . ) 

627.06 
620 * 55 
615 9 95 
613.16 

614.02 
618.19 

-638.17 
655 * 75 
679.81 
711.9 
754 * 89 
812.38 
889.60 

s 3 . a  
996.73 
999.96 

612 e 43 

626.24 

W*70 

PITCH 
INERTIA 

(SLUG FT2) 

49,657,834 
49,408,592 
49,344 , 302 
49, 161 , 607 
49,104,456 
49,0429801 
48,925,656 
48,6949784 
48 , 261 , bii 
47,540,959 
46,389,148 
44,716,970 
42,204,821 
38,474,547 
33,426,786 
28 , 4% 9 619 
&,a29737 
25 805 612 
25,619,404 

ROLL 
INERTIA 

(SLUG Fr2) 

(1) Measured in inches 
forward of gimbal 
plane e 
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S A T m  IB 
E2TGIEB PROPULSION CHARACTERISTICS 

S-IB FIRST STACZ (8 H-1  Engines) 

Thrust Per Engine 
Specific Impulse 

S-IVB SECOND SPAaE (1 5-2 Engine) 

Thrust 
Specific Impulse 

188,000 Ib Sea Level 
256 sec Sea Level 

200,OoQ lb V ~ C U W ~  
426 see vacuum 

8 



e 
0 
L% 
Y 

0 
Q) 
c. 

W' 

2 a 

z 

E 
3 

LI 
W 

(3 z 
W 

L1c 

0 

I- 
3 
0 
LL 
0 
W 

I- 

n 
a 
m 

r 

F! 
9 



POWER ON 

n 

c- 
w 
0 

0 

z 

LL 
LL 
w 
0 
0 

2 a 
CI 

1.4. - 

1.2 - 

1.0 - 

0.8- 

0.6 - 

0.4 . 

0.2 - 

0 ,  
2 3 4 5 6 

MACH NUMBER, M 

FIGURE 4 

10 



RCE G ~ ~ D I E ~ ?  
OF PRESSURE 

REF DIAMETER = 2VN 
ANGLE OF ATTACK = 0" 

0 1 2 3 5 6 

1 1  



12 



r l 3  . .  
O ' 3  

h r *  

L A t -  
r l d  

w w  

13 



spec i f ica t ion  of a control  loop na tu ra l  frequency of 0.15 cps and a 
damping r a t i o  of 0.75* The r e su l t i ng  gain program f o r  t h e  &engine 
reference t r a j ec to ry  is  presented i n  f igure  6. 
used f o r  a l l  t r a j e c t o r i e s  studied, 

Th i s  gain program w a s  

The r o l l  au topi lo t  cont ro l  equation u t i l i z e d  a t t i t u d e  error and rate 
of change of a t t i t u d e  e r r o r  feedback. These gains,  constant throughout 
f i r s t  s tage  f l i g h t ,  were established by specifying an average r o l l  
na tu ra l  frequency of 0.15 cps and an average damping r a t i o  of 0.75. 

Each engine servo loop w a s  simulated by an in t eg ra to r  with pos i t ion  
feedback, - + 8 degrees and a rate l i m i t  of 2 15 degrees pe r  second, 

Each engine i n  both p i t ch  and yaw had a pos i t ion  Limit of 

4.0 ORBIT CAPABILITY 

An analysis  w a s  conducted t o  determine the o r b i t  capabi l i ty  of the 
Saturn IB vehicle  under t h e  conditions of a first s tage  engine f a i lu re ,  
The analysis  did not include the  e f f e c t s  of winds o r  dispersions i n  
vehicle  parameters. 

The var ia t ions  i n  the S-IB s tage  burnout conditions r e su l t i ng  f r o m  wind 
disturbances and vehicle  parameter dispersions are small and have negli- 
g ib le  e f f e c t s  on the  r e su l t i ng  orb i t s .  

The engine-out t r a j e c t o r i e s  generated during t h i s  port ion of t he  study 
were a l so  used t o  determine t h e  a l t i t u d e  of m a x i m u m  dynamic pressure 
f o r  use i n  t he  con t ro l l ab i l i t y  analysis  ( sec t ion  5.0). 

4.1 Boost Trajectory Character is t ics  

The primary parameter a f fec ted  by an engine failure i s  angle of a t tack ,  
which becomes in to le rab ly  high i n  t h e  m a x i m u m  dynamic pressure region 
(espec ia l ly  i n  the  p i t c h  plane) with an ea r ly  engine f a i lu re .  
an engine f a i l u r e ,  angle of a t tack  buildup occurs i n  both the p i t c h  and 
yaw plane because, 1) the p i t c h  command program, which w a s  designed t o  
minimize the  effects of gravi ty ,  i s  no longer compatible due t o  the  
reduced t h r u s t  l eve l ,  and 2 )  a combination of a t t i t u d e  e r r o r  and angle 
of a t tack  feedback i s  necessary t o  command the t r i m  engine def lect ion 
required t o  counteract t h e  unbalanced moments about t h e  p i t ch  and yaw 
axes . 

Following 

Since the nominal f l i g h t  scheme s t r i v e s  t o  a t t a i n  a minimum angle of 
a t tack  h i s to ry ,  t h e  enginerrout conditions are almost always more c r i t i c a l  
than the  nominal t r a j ec to ry  with respect t o  con t ro l l ab i l i t y .  

Other s ign i f i can t  vehicle parameters which are af fec ted  by an engine 
f a i l u r e  are i l l u s t r a t ed  i n  the  following f igures .  Ground t rack his- 
t o r i e s  f o r  both number 1 and 3 engine f a i l u r e s  are presented i n  f igures  
7, 8, and 9,  From f igu re  7 it can be seen t h a t  ear ly  f a i l u r e s  of engine 
number 3 r e s u l t  i n  considerable dispersion uprange i n  the  v i c in i ty  of 
the launch si te,  

14 
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I n e r t i a l  e levat ion f l i g h t  path angle h i s t o r i e s  and range versus a l t i t u d e  
p r o f i l e s ,  f o r  s eve ra l  engine number 1 f a i l u r e  times, are cowpared with 
t h e  nominal &engine case in f i g u r e s  LO md11 respect ively,  

The conditions ex i s t ing  at the  t i m e  of S-IB/S-IVB stage separat ion are 
presented i n  f igu res  12 through 15. Engine failures p r i o r  t o  about 20 
seconds after l i f t o f f  resu l ted  i n  uncontrolled vehicle  tumbling, thus , 
separation w i l l  not be possible ,  Several  of t h e  more severe combinations 
of angle of a t tack  and dynamic pressure ex i s t ing  a t  the time of separa- 
t i o n  were inves t iga ted  and it w a s  determined t h a t  S-ID a t t i t u d e  devi- 
a t ions during t h e  separation t r ans i en t  were less than 15 degrees. 
Therefore , S-IVB s t age  control  following separat ion i s  not c r i t i c a l  
f o r  those cases of engine failure f o r  which S-IB s tage  con t ro l l ab i l i t y  
is sa t i s f ac to ry ,  

4,2 Resultant Orbit 

Achievement of the primary mission f o r  the  Saturn I B  configuration i s  
jeopardized by t h e  occurrence of a boost s t age  engine f a i l u r e ,  
p a r t i c u l a r  concern i s  the  o r b i t  r e su l t i ng  from a given engine-out con- 
d i t ion ,  The f l i g h t  conditions ex i s t ing  at s-IVB propel lant  depletion 
were used t o  establish t h e  o r b i t  ephemeris and the perigee a l t i t u d e  w a s  
se lec ted  as t h e  element used t o  judge t h e  acceptab i l i ty  of t h e  orb i t .  
Figures 10 and 11 indica te  t h a t  the S-IVB s tage  burnout conditions f o r  
f l ight path angle and a l t i t u d e  are near nominal, and therefore ,  burnout 
veloci ty  i s  the  prime element i n  shaping the perigee a l t i t u d e  trend. 
It w a s  assumed t h a t  dispersions from the nominal f l igh t  h i s to ry  were 
not s u f f i c i e n t  t o  render the  S-IVB guidance polynomial inapplicable,  
Figure 16 shows tha t  engine number 1 f a i l u r e s  p r i o r  t o  139 seconds y i e l d  
r e su l t an t  earth o r b i t s  whose perigee a l t i t u d e  i s  deemed unacceptable , 
i.e., less than 60 naut ica l  miles, whi le  f a i l u r e s  after 139 seconds lead 
t o  o r b i t s  whose perigees are g rea t e r  than 60 nau t i ca l  miles but less 
than 105 nau t i ca l  miles. By u t i l i z i n g  t h e  S-IVB stage f l i g h t  performance 
reserve (FPR) propel lants ,  the  port ion of f l i g h t  time which can withstand 
t h e  loss of one engine and s t i l l  maintain a minimum perigee a l t i t u d e  of 
60 naut ica l  miles i s  increased by approximately 39 seconds, such that 
f a i l u r e s  after 100 seconds r e s u l t  i n  an "acceptable" orb i t .  
by use of the  S-IVB stage FPR, engine f a i l u r e  times after 109 seconds 
result i n  the nominal lo5 mile o r b i t a l  condition. However, it should 
be stressed t h a t  the eventual a v a i l a b i l i t y  of the FPR i s  always question- 
able u n t i l  wel l  i n t o  S-IVB fl ight due t o  t h e  possible  f l u x  i n  the per- 
formance charac te r i s t ics .  

Of 

I n  addi t ion,  

Figure 17 presents perigee a l t i t u d e  versus t i m e  of engine-out f o r  engine 
3. 
more c r i t i c a l .  

A comparison wi th  f igu re  16 indica tes  tha t  engine 1 is  s l i g h t l y  the  

Figure 18 shows t h e  amount of FPR required f o r  an acceptable perigee 
o r b i t  as a function of t i m e  of engine-out f o r  both number 1 and 3 engine 
f a i lu re s ,  Engine f a i l u r e  times occurring on the  hor izonta l  segment of 
t h e  curve need a l l  t h e  avai lable  FPR, and if they receive a l l  t h a t  i s  
loaded the i r  r e su l t an t  o rb i t  per igee i s  tha t  presented i n  f igures  16 
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R T I ~ ~  ELEVATION FLIGHT P ANGLE HISTORY COMPARISON BETWEEN N ~ ~ N A  
AND NUMBER 1 ENGINE OUT TRAJECTORIES AT 20,40,60, AND 120 SEGCMDS 
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and 17. 
t he  primary' mission (105 nau t i ca l  mile c i r c u l a r  o r b i t )  ca.n be achieved 
i f  t h e  ind ica ted  FPR propel lant  is  available.  

For engine f a i l u r e  times on the  sloped segment of t h e  curve, 

CONTROLLABILITY 

The c o n t r o l l a b i l i t y  of the  vehicle  w a s  invest igated f o r  an engine n m  
ber 1 f a i l u r e  and an engine number 3 f a i l u r e  f o r  each of the following 
conditions : 

a. No winds 

b. Ninety-nine percent probabi l i ty  of occurrence wind shear  w i t h  a 
gust a t  the  a l t i t u d e  of maximum dynamic pressure 

c o  Dispersions of vehicle cha rac t e r i s t i c s  w i t h  t h e  winds mentioned 
i n  b above. 

Engine number 1 and engine number 3 f a i l u r e s  were se l ec t ed  f o r  the in- 
ves t iga t ion  because of t h e i r  diametr ical ly  opposing inf luence on vehicle  
response. The antisymmetric e f f e c t s  of failures of engine 1 and 3 are 
evident i n  figures 19, 20 and 21, which represent t y p i c a l  pa;r?ameter 
t r ans i en t s  following an engine f a i l u r e  i n  the high dynamic. pressure 
region, The r e s u l t s  obtained through the  simulation of engines 1 and 
3 f a i l u r e s  are the same as r e s u l t s  t h a t  would be obtained by simulating 
engine 2 and 4 failures, except f o r  negl ig ib le  effects due t o  such 
asymmetries as t he  r o l l  program and the nonspherical earth. Tnboard 
engine f a i l u r e s  were not considered because of the  less severe dis turbing 
moment, as compared t o  t h e  disturbance due t o  an outboard engine f a i l u r e ,  
Also, s ince  the  inboard engines are not gimballed, no decrease i n  avai l -  
able control  moment r e s u l t s  under t he  condition of an inboard engine- 
out. For these  reasons, t he  inves t iga t ion  of engine 1 and engine 3 
f a i l u r e s  w a s  f e l t  t o  be s u f f i c i e n t  t o  y i e l d  those conditions of grea tes t  
i n t e r e s t ,  i.e. 
3 f a i lu re s .  

t h e  "worst case" envelope is  defined by engine 1 and 

For the purposes of t h e  study, the  vehic le  w a s  considered t o  be "control- 
lable" i f  it d i d  not tumble and i f  the  s t r u c t u r a l  i n t e g r i t y  w a s  main- 
ta ined,  This de f in i t i on  of con t ro l l ab i l i t y  requires  a knowledge of the 
s t r u c t u r a l  loads experienced by the vehicle.  Therefore, a loads analysis  
w a s  performed f o r  s eve ra l  of  t h e  more c r i t i ca l  engine-out t r a j e c t o r i e s .  

"No Wind" Control Charac te r i s t ics  

The no wind t r a j e c t o r i e s  , obtained fo r  the o r b i t  capabi l i ty  analysis  , 
showed t h a t  t h e  f l i g h t  t i m e  before which an engine f a i l u r e  would r e s u l t  
i n  tumbling w a s  20 seconds f o r  engine 1 f a i l u r e s  and 10 seconds f o r  
engine 3 f a i lu re s .  At t i tude  e r r o r  h i s t o r i e s  f o r  the  borderl ine cases 
are  presented i n  figures 22 through 25* From these figures it can be 
seen tha t  t h e  a t t i t u d e  e r ro r s  begin t o  diverge i n  intervalsof  about 115 
t o  125 seconds. 
dynamic pressure and angle of a t t ack  fo r  t he  ea r ly  t i m e  of engine-out 

Th i s  time i n t e r v a l  corresponds t o  the area of maximum 
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t r a j e c t o r i e s ,  The divergence o r  tumbling i s  due t o  t h e  f a c t  t h a t  t h e  
aerodynamic moment at t h e  maximum pressure condition i s  g rea t e r  than 
t h e  m a x i m u m  ava i l ab le  cont ro l  moment, 

Bending moments were not ca lcu la ted  f o r  these t r a j e c t o r i e s  but  t h e  
aerodynamic loads were su f f i c i en t ly  high f o r  a l l  t h e  cases i n  which 
tumbling occurred t h a t  it sa fe ly  can be said t h a t  s t r u c t u r a l  f a i l u r e  
w i l l  occur; possibly before a c t u a l  cont ro l  is lost, 

5.2 

The winds employed i n  t h i s  study were developed using da ta  obtained 
from reference L, t h e  wind speed p r o f i l e  
envelope,, t h e  v e r t i c a l  wind shear  spectrum envelopes and t h e  wind gust 
a re  presented i n  f igures  26, 27 and 28, These winds w e r e  appl ied as 
a means of per turbing t h e  vehicle  from t h e  "nominal" atmospheric con- 
d i t i ons  during f i rs t  s tage  f l i g h t .  The winds functioned as tests of 
t h e  launch vehicle 's  a b i l i t y  t o  maintain cont ro l  and/or s t r u c t u r a l  
i n t e g r i t y  during s p e c i f i c  phases of t h e  S-IB boost s tage  t r a j ec to ry .  

mese data, which include 

5.2.1. 1 Construction 

I n  t h e  development of t h e  wind p r o f i l e s ,  two b a s i c  assumptions were 
made. F i r s t ,  it w a s  assumed t h a t  t h e  flow always acted perpendicular 
t o  a radius  vector  drawn from t h e  center  of the  earth t o  t h e  vehicle.  
Second, i n  t h e  construction of t h e  f i n a l  wind p r o f i l e s ,  it w a s  assumed 
t h a t  the  wind p r o f i l e  "decay" phase would be a mirror  image of t h e  
"bui Id-up'' phase e 

The a l t i t u d e  of maximum dynamic pressure,  and the associated dynamic 
pressure,  angle of attack, and t i m e  of occurrence as a function of t i m e  
of engine failure are presented i n  f igures  29 and 30 f o r  t h e  no wind 
number 1 engine-out t r a j e c t o r i e s .  The same parameters are given i n  
f igures  31 and 32 f o r  t h e  no wind number 3 engine-out t r a j e c t o r i e s ,  
The dynamic pressure h i s t o r i e s  of each of the  no wind t r a j e c t o r i e s  were 
inves t iga ted  t o  determine t h e  a l t i t u d e  of maximum dynamic pressure f o r  
each engine-out condition. The wind p r o f i l e s  were then constructed,  
i n  the manner described i n  reference 4, s o  t h a t  t he  a l t i t u d e  of maximum 
wind ve loc i ty  w a s  equal  t o  t h e  a l t i t u d e  o f  maximum dynamic pressures  

Quasi-square wave shaped gusts  (embedded je t s )  were a l s o  developed as 
set f o r t h  i n  reference 4. 
increase of 29.52 feet/second over a "build-up" a l t i t u d e  increase of 
82 feet ,  a "l ife" of gust f o r  164 feet increase of a l t i t u d e ,  and a 
ve loc i ty  decrease of 29.52 feet/second over t h e  "decay" a l t i t u d e  in- 
crease of 82 feet, as shown on f igu re  28. 
such t h a t  they were an extension of the  build-up phase of the wind 
p r o f i l e s ,  and occurred a t  t h e  a l t i t u d e  of maximum wind velocity.  

These gusts were composed of  a wind veloci ty  

These gusts  w e r e  imposed 
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A separa te  wind p r o f i l e  w a s  constructed f o r  each engine-out t r a j e c t o r y ,  
The p r o f i l e s ,  w i t h  gust included, are shown i n  f igures  33 and 34. 
s p e c i f i c  engine-out t r a j e c t o r y  f o r  which each p r o f i l e  w a s  used i s  in- 
d ica ted  on the f igures ,  

The 

The vehicle  dynamic response w a s  determined for each engine-out condition 
using both head winds and s i d e  winds, Head winds were contained i n  t h e  
p i t ch  plane,  a t  a heading of 180 degrees t o  t h e  f l i g h t  azimuth. 
winds were contained i n  t h e  yaw plane,  a t  a heading of 90 degrees t o  
the  f l i g h t  azimuth, L e f t  s i d e  winds were used i n  the  number 1 engine- 
out t r agec to r i e s  and r i g h t  s ide winds were used i n  the  number 3 engine- 
out t r a j e c t o r i e s .  These s i d e  winds were appl ied i n  t h e  d i rec t ions  
described above so t h a t  the dis turbing moment r e s u l t i n g  from t h e  wind 
angle of a t t ack  would add t o ,  r a t h e r  than sub t r ac t  from, the  d is turb ing  
moment due t o  t h e  engine-out, T a i l  winds w e r e  not considered because 
of t he  r e su l t i ng  reduction i n  r e l a t i v e  ve loc i ty  and, t he re fo re  reduction 
i n  dynamic pressures  

Side 

Four sets of engine-out t ra j  e c t o r i e s  w i t h  wind have been defined and 
are l isted below: 

a, Engine 1 out - head winds 

b e  Engine 1 out - l e f t  side winds 

c o  Engine 3 out - head winds 

d, Engine 3 out a r igh t  side winds 

Engine-out times of 30, 40, 50, 60, 70 and 80 seconds were simulated 
f o r  each of t he  above sets of t r a j e c t o r i e s ,  

The maximum product of dynamic pressure and angle of a t t ack  w a s  calculated 
f o r  each t r a j ec tozy  and the  r e s u l t s  used t o  develop a "worst case" envelope, 

This worst case envelope i s  presented i n  f igure  35. It  must be understood 
t h a t  while t h i s  envelope presents  t h e  most c r i t i c a l  conditions the re  
are, i n  some cases,  o the r  combinations of number and t i m e  o f  engine f a i l u r e  
and preva i l ing  wind mode which w i l l  r e s u l t  i n  a dynamic pressure-angle of 
a t t ack  product which i s  almost equal ly  c r i t i c a l .  

5,2,2,1 Control P r o f i l e s  

The vehic le  angle of a t t ack ,  dynamic pressure noma1 acce lera t ion ,  
angular acce lera t ion  , and average t h r u s t  vector  def lect ion response i s  
presented i n  f igures  36 through 55. 
through 45 present number 1 engine out f o r  head and l e f t  s i d e  winds, 
respect ively.  Number 3 engine f a i l u r e s ,  head and r igh t  side winds are 

Figures 36 through 40, and 4 1  
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shown i n  f igures  46 throagh 50, and 51 through 55. 
s en t  t h e  vehic le  dynamic response f o r  each t r a j e c t o r y  s tudied,  which 
f o r  each p a r t i c u l a r  engine and t i m e  of f a i l u r e  
c r i t i c a l  control  and aerodynamic loading conditions. The vehicle 
dynamic response for t h e  most c r i t i c a l  t r a j e c t o r i e s  , which are defined 
by t h e  worst case envelope presented i n  f igu re  35, w a s  used i n  con- 
junct ion with t h e  vehicle 's  physical  cha rac t e r i s t i c s  t o  ca lcu la te  t h e  
s t r u c t u r a l  loading. The r e s u l t i n g  loads w i l l  be discussed i n  sec t ion  

These figures pre- 

represents  t h e  most 

5.4. 

5.3 Dispersions 

After es tab l i sh ing  t h e  more " c r i t i c a l "  (def ined as t h e  maximum product 
of dynamic pressure and angle of a t tack  presented i n  f igu re  35) engine- 
out cases,  t h e  e f f e c t  of vehicle  parameter dispers ions on these  cr i t ical  
cases w a s  invest igated.  

5.3,l Vehicle Parameter Variations 

The following vehic le  and au topi lo t  parameters, s e l ec t ed  as having t h e  
most s ign i f icance  with respect t o  t h e  vehic le  performance, were var ied  
i n  the dispersion ana lys i s  : 

E t o  Tota l  Thrust (AT) 

Change, i n  percent ,  of t h e  t o t a l  vehic le  t h rus t ,  

b e  Thrust Unbalance (Tu)  

A pos i t i ve  unbalance w i l l  produce nose up o r  nose l e f t  vehic le  
mot i on e 

c. Angle of Attack Gain (Abo) 

A pos i t i ve  va r i a t ion  tends t o  reduce aerodynamic loads. 

d, Att i tude Gain (Aao) 

A pos i t i ve  va r i a t ion  tends t o  increase the  aerodynamic loads 
(opposes angle of a t tack  ga in) ,  

e. Center of Pressure ( A c P )  

Pos i t i ve  va r i a t ion  i s  a cp s h i f t  toward t h e  nosee 

f, Center of Gravity (Acg) 

Pos i t i ve  va r i a t ion  i s  a cg s h i f t  toward t h e  noses 

The assumed three sigma var ia t ions  ( A D  ) of the  above parameters are 
Shawn i n  table V I ,  These vehicle  paradeter  dispersions w e r e  resolved 
i n t o  th ree  sigma t r a j e c t o r y  dispersions (AP.) which were then used t o  

1 
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TABU VI 

SATURW IB PARAMETER D I m C ! E S  

( 3 0  VARIANCE LEVEL) 

11.8 11.4 8.66 

70.1 67.7 51.6 

5.91 5.n 4.35 

5.91 5-71 4.35 

1.28 1.24 0.94 

0.71 0.n 0-n 
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determine t h e  loads dispersions f o r  each of the  most c r i t i c a l  engine- 
out t r a j e c t o r i e s  , 

Variations i n  t h e  maximum angle of a t t ack  and t h e  dynamic pressure,  
normal accelerat ion,  and angular accelerat ion at t h e  time of maximum 
angle of a t t ack  were determined as a funct ion of dispersions i n  t h e  
previously described vehicle  and au topi lo t  parameterse 
were chosen because of t h e i r  important influence on vehicle  s t r u c t u r a l  
loading. The dispers ion ana lys i s  ( a l s o  t h e  loads analysis)  w a s  per- 
formed f o r  each of the f i v e  t r a j e c t o r i e s  ( t h e  most c r i t i c a l  t r a j e c t o r y  
fo r  engine f a i l u r e  times of 40, 50, 60, 70 and 80 seconds as ind ica ted  
i n  f igure  35) l i s t e d  below: 

These var iab les  

a. Engine number 1 f a i l u r e  at 40 seconds with head winds 

b. Engine number 1 f a i l u r e  at 50 seconds w i t h  head winds 

cs  Engine number 1 f a i l u r e  at 60 seconds with head winds 

d, Engine number 3 f a i l u r e  at 70 seconds w i t h  head winds 

e, Engine number 1 f a i l u r e  a t  80 seconds with l e f t  side winds. 

The engine number 1 f a i l u r e  a t  30 seconds with head wind t r a j ec to ry  i s  
not l i s t e d  because t h e  unfavorable dispers ions,  such as a forward s h i f t  
i n  the  center  of  pressure,  an aft  s h i f t  i n  t h e  cg, e tc . ,  r e su l t ed  i n  
vehicle  tumbling due t o  t h e  excessive aerodynamic moment. The relat ion-  
ships  between t h e  vehic le  t h r e e  sigma performance dispersions (aP. ) and 
t h e  parameter dispers ions ( a D  ) were found by simulating t w o  pos i t i ve  
dispersions and two negative dispers ions f o r  each parameter investigated.  
The va r i a t ion  i n  angle of a t t ack ,  dynamic pressure,  normal acce lera t ion ,  
and angular acce lera t ion  as a funct ion of the above vehic le  parameter 
dispersions are shown i n  f igures  56 through 71, 
were l inea r i zed  about t h e  nominal value i n  order t o  obtain an approxi- 
mation f o r  t h e  p a r t i a l  der iva t ive  aP./aD 
dispers ions,  AD 
dispersion,  as , 

These re la t ionships  

The three  sigma parameter 
w q r e  then used t o  h l c d i a t e  t h e  th ree  sigma performance 

For each of t h e  inves t iga ted  t r a j ec to ry  parameters , these three sigma 
var ia t ions  I) Pi , were then root-sum-squared, such t h a t  , 
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The values of the  P.'s resolved by t h i s  procedure represented t h e  
variances about t he  nominal t r a j e c t o r y  parameters o These variances 
were later employed i n  the loads dispers ion analysis.  

1 

5.4 Load Analysis 

Limit loads on the  S-IVB s t age  during first s tage  f l i g h t  of t h e  Saturn 
I B  vehicle  have been calculated a t  the t i m e  of maximum product of dyna- 
mic pressure and angle of attack (sa) f o r  both t h e  s tandard &engine 
t r a j ec to ry  and the  f i v e  most c r i t i c a l  engine-out t r a j e c t o r i e s ,  The 
results of these ca lcu la t ions  are presented i n  figures 72 and 73. 

I n  these figures, equivalent compressive load, N * ( l b / i n ) ,  for two 
S-IVB stage s t a t i o n s  is  p l o t t e d  against  time of engine f a i l u r e .  
parameter N' is defined as t h e  maximum load at  a cross-section due t o  
combined a x i h  loading and bending, o r  

C The 

The s t a t i o n s  se lec ted  f o r  t he  presentat ion of r e s u l t s  are the  S-IVB/ 
instrument u n i t  i n t e r f ace  (S ta t ion  1662,859) and the S-IVB/S-IB in t e r -  
face (S ta t ion  962,304). 
o r  minimum margin of  s a fe ty ,  s t a t i o n s  on the  stage, 

These s t a t i o n s  are current ly  t h e  most c r i t i c a l ,  

Figure 72 shows a comparison of N' a t  the  maximum qa poin t  f o r  a stan- 
dard &engine t r a j e c t o r y  w i t h  N g c  f o r  the maximum qa poin ts  of each of 
the  engine f a i l u r e  t r a j e c t o r i e s .  To ind ica t e  t he  spread i n  loads cal- 
culated f o r  similar t r a j e c t o r y  conditions by MSFC ( reference 5) and 
DAC, the  o the r  constant s lope l i n e  has been entered on the graph. When 
N V c  f o r  a p a r t i c u l a r  time of engine f a i l u r e  l ies  above either of t h e  
constant-slope l i n e s ,  t h e  S-IVB s tage  possibly may experience permanent 
deformation o r  s t r u c t u r a l  i n s t a b i l i t y .  
1662.859 f o r  three sigma high  and low dispersions about the  nominal 
conditions (as discussed i n  Section 5.3.2) at maximum qa f o r  each t i m e  
of engine f a i l u r e  considered, are a l so  presented. No attempt has  been 
made t o  construct  a curve through these points  s ince  they are somewhat 
e r r a t i c .  However, it should be noted t h a t  t h e  e f f ec t  of these disper- 
sions on loads does not appear t o  be pronounced f o r  engine out times 
p r i o r  t o  60 seconds, 

Values of N e c  a t  S t a t ion  

The foregoing discussion appl ies  a lso t o  f igure  73 with  respect t o  
S ta t ion  962,304, 

Because of varying s t rength  capab i l i t i e s  along t h e  vehic le  f o r  the  same 
load condition, it i s  hazardous t o  attempt t o  i n f e r  an exact time of 
engine f a i l u r e  from each f igu re  t h a t  would be a nonc r i t i ca l  one from a 
s t r u c t u r a l  standpoint,  It  can be sa fe ly  i n f e r r e d  t h a t  t h e  earlier the  
time o f  engine failure t h e  more l i k e l y  t h e  p o s s i b i l i t y  of permanent 
deformation o r  s t r u c t u r a l  i n s t a b i l i t y .  
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Ge0 CONCLUSIONS 

An analysis  has been made t o  determine t h e  e f f e c t s  of t h e  f a i l u r e  of 
the most "c r i t i ca l "  boost s tage  (H-1)  engine upon vehicle c o n t r o l l a b i l i t y  
and mission completion, 

Tiie vehicle  w a s  s a i d  t o  be control lable  i f  s t a b i l i t y  was maintained and 
i ts  s t r u c t u r a l  l imi t a t ions  were not exceedede The analysis  r e s u l t s  
i nd ica t e  the con t ro l l ab i l i t y  is c r i t i c a l  f o r  engine f a i l u r e  p r i o r  t o  
t he  maximum dynamic pressure a l t i t u d e  region o r  p r i o r  t o  about 83 
seconds of f l i g h t  time, This general  conclusion i s  based on t h e  r e s u l t s  
of a loads and dispersion ana lys i s  performed f o r  t he  f ive  most c r i t i c a l  
engine-out t r a j e c t o r i e s  which included the  Eost severe w i n d  disturbances. 
The b a r  graph presented i n  figure 74 summarizes t h e  e f f ec t s  of each 
c r i t e r i o n  used t o  evaluate  the  vehicle  performance. These c r i t e r i a  in-  
clude the  a b i l i t y  t o  m a i n t a i n  cont ro l ,  t o  maintain s t r u c t u r a l  loads at 
a safe l e v e l  and t o  achieve t h e  desired o rb i t .  

If s t r u c t u r a l  loading is  not considered, vehicle  control  i s  maintained 
f o r  all engine  f a i l u r e s  after 30 seconds of f l i g h t  assuming dispersions 
less than or equal t o  the  assumed t h r e e  sigma dispersion l is ted i n  table 
V I ,  P r i o r  t o  30 seconds engine number 1 f a i l u r e s  resu l ted  i n  tumbling 
i n  t h e  maximum dynamic pressure a l t i t u d e  region, This tumbling occurs 
f o r  engine 1 f a i l u r e s  p r i o r  t o  20 seconds Without wind disturbances and 
dispersions Combinations of wind disturbances and unfavorable dis- 
persions increase the time t h a t  an engine number 1 f a i l u r e  w i l l  r e su l t  
i n  loss of control  t o  30 seconds of f l i g h t  time, 

The r e s u l t s  of t h e  loads analysis  indicated t h a t  the  loads as presented 
i n  reference 5 w i l l  be exceeded at S ta t ion  962.304 for  each of the  f i v e  
t r a j e c t o r i e s  selected f o r  the analysis.  When the e f f ec t s  of dispers ion 
are not considered, t he re  i s  a t i m e  i n t e r v a l  from 59 t o  72 seconds, 
during which an engine f a i l u r e  w i l l  not r e s u l t  i n  excessive loads. 
However, the  e f f e c t s  of dispersions ind ica te  t h a t  load limits could 
be exceeded during t h i s  period, 

The o r b i t  capability analysis  w a s  performed without the e f f e c t s  of wind 
disturbances and dispers ions i n  vehicle  parameters e The r e s u l t s  indi-  
ca t e  t ha t  f o r  an engine f a i l u r e  p r i o r  t o  approximately 139 seconds of 
f l i g h t  time o r b i t  i n j ec t ion  can not be achieved,though use of f l igh t  
performance reserve propel lants  i n  the S-IVB stage can better t h i s  
s i t u a t i o n  somewhat, 

When an engine f a i l u r e  occurs at a f l i g h t  time where the  loss of con- 
t r o l l a b i l i t y  i s  not  predicted and no s u i t a b l e  o r b i t  conditions can be 
achieved, there are no pressing demands f o r  immediate abort. That i s ,  
there i s  a choice of t h e  abort procedure. For t h e  case where loss of 
con t ro l l ab i l i t y  i s  predicted the  e a r l i e r  the engine f a i l u r e  occurs the 
g rea t e r  i s  the t i m e  before which abort i s  mandatory9since ac tua l  
s t r u c t u r a l  f a i l u r e  doesn9t occur u n t i l  t h e  vehicle  i s  i n  the maximum 
dynamic pressure region of the  t r a j ec to ry .  
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There are severa l  areas of possible  i n t e r e s t  which were not included 
i n  t h i s  study, There are a l so  items which w e r e  touched upon but de- 
serve more extensive analysis,  These include top ics  such as survey 
of less c r i t i ca l  engines, aerodynamic heating, time of abort  w i t h  regard 
t o  vehicle  c o n t r o l l a b i l i t y  and the chance of deb rh  s t r i k i n g  inhabited 
areas, time of abort  w i th  regard t o  re-entry module recovery, a l t e r n a t e  
optimum a t t i t u d e  command h is tory ,  compromise a t t i t u d e  command h i s to ry ,  
optimization of gain program for loads,  extended research on poss ib le  
a l t e rna te  mission object ives  , and a thorough examination of p robab i l i t i e s  
of F T R  propel lants  ava i l ab i l i t y .  
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